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Abstract

Existence and efficiency of general equilibrium with commodity money is investigated in an economy where N commodities are
traded at N(N − 1)/2 commodity-pairwise trading posts. Trade is a resource-using activity recovering transaction costs through
the spread between bid (wholesale) and ask (retail) prices. Budget constraints, enforced at each trading post separately, imply
demand for a carrier of value between trading posts. Existence of general equilibrium is established under conventional convexity
and continuity conditions while structuring the price space to account for distinct bid and ask price ratios. Commodity money flows
are identified as the difference between gross and net inter-post trades.
© 2008 Elsevier B.V. All rights reserved.
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“[An] important and difficult question . . . [is] not answered by the approach taken here: the integration of money
in the theory of value . . .”
Gerard Debreu, Theory of Value (1959)

1. Introduction

It is well-known that the Arrow–Debreu model of Walrasian general equilibrium cannot account for money. Professor
Hahn (1982) writes

“The most serious challenge that the existence of money poses to the theorist is this: the best developed model
of the economy cannot find room for it. The best developed model is, of course, the Arrow–Debreu version of a
Walrasian general equilibrium. A first, and . . . difficult . . . task is to find an alternative construction without . . .

sacrificing the clarity and logical coherence . . . of Arrow–Debreu.”

This paper pursues development of foundations for a theory of money based on elaborating the detail structure of an
Arrow–Debreu model. The elementary first step is to create a general equilibrium where there is a well-defined demand
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for a medium of exchange—a carrier of value between transactions. This is arranged by replacing the single budget
constraint of the Arrow–Debreu model with the requirement that the typical household or firm pays for its purchases
directly at each of many separate transactions. Transactions take place at commodity-pairwise trading posts. Then a
well-defined demand for media of exchange (commodity monies, not necessarily unique) arises endogenously as an
outcome of the market equilibrium. The use of media of exchange is particularly evident when the structure of demands
is characterized by an absence of double coincidence of wants (Jevons, 1875). Media of exchange are characterized as
the carrier of value between transactions (not fulfilling final demands or input requirements themselves), the difference
between gross and net trades1. Related general equilibrium models with transaction cost include Foley (1970); Hahn
(1971, 1973); Kurz (1974); Starrett (1973); Starr (2003c).

The trading post model is intended to provide a parsimonious2 addition to the Arrow–Debreu model sufficient to
generate a theory of money. The monetary structure of trade is shown to be a consequence of the price theory general
equilibrium, not a separate assumption.

1.1. Structure of the trading post model

In the trading post model, transactions take place at commodity-pairwise trading posts (Shapley and Shubik, 1977;
Walras, 1874; Wicksell, 1936) with budget constraints (you pay for what you get in commodity terms) enforced at
each post. Prices — bid (wholesale) and ask (retail) — are quoted as commodity rates of exchange. Trade is arranged
by firms, typically buying at bid prices and selling at ask prices, incurring costs (resources used up in the transaction
process) and recouping them through the bid/ask spread. Market equilibrium occurs when bid and ask prices at each
trading post have adjusted so that all trading posts clear.

1.2. Structure of the proof

The structure of the proof of existence of general equilibrium follows the approach of Arrow and Debreu (1954);
Debreu (1959); Starr (1997). The usual assumptions of continuity, convexity (traditional but by no means innocuous in
this context), and no free lunch/irreversibility are used. The price space at a trading post for exchange of one good at bid
price for another at ask price is the unit 1-simplex, allowing any possible nonnegative relative price ratio. The price space
for the economy as a whole then is a Cartesian product of unit 1-simplices. The attainable set of trading post transactions
is compact. As in Arrow and Debreu (1954), the model considers transaction plans of firms and households artificially
bounded in a compact set including the attainable set as a proper subset. Price adjustment to a fixed point with market
clearing leads to equilibrium of the artificially bounded economy. But the artificial bounds are not a binding constraint
in equilibrium. The equilibrium of the artificially bounded economy is as well an equilibrium of the original economy.

1.3. Conclusion: The medium(a) of exchange

The general equilibrium specifies each household and firm’s trading plan. At the conclusion of trade, each has
achieved a net trade. Gross trades include trading activity that goes to paying for acquisitions and accepting payment
for sales rather than directly implementing desired net trades. It is easy to calculate gross trades and net trades at
equilibrium. For households, the difference — gross trades minus net trades — represents trading activity in carriers
of value between trades, media of exchange (perhaps including some arbitrage). Since firms perform a market-making
function within trading posts, identification of media of exchange used by firms is not so straightforward. After netting
out intra-post trades, the remaining difference between inter-post gross and net trades represents the firms’ trade flows
of media of exchange. In some examples (see Starr, 2003a,b, 2008) the medium of exchange may be a single specialized

1 The present model is an alternative to the fiat money models of overlapping generations (Wallace, 1980) and of search (Kiyotaki and Wright,
1989). There a unique unbacked fiat money of positive value is typically assumed and presented as a bubble. The models allow, as well, a non-
monetary no-trade equilibrium where the fiat money has a value of zero. In the present model, the existence of media of exchange and their values
are endogenously determined. It is possible to accommodate in an Arrow–Debreu setting an intrinsically worthless paper money trading at a positive
value and used as a common medium of exchange. The rationale is that taxes payable in paper money provide backing for a positive value, and low
transaction cost ensures use as medium of exchange (Goldberg, 2005; Smith, 1776; Starr, 2003a,b).

2 Consistent with Ockham’s razor.
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commodity (the common medium of exchange). The approach of the present model is intended to provide a Walrasian
general equilibrium theory of (commodity) money as a medium of exchange. It is sufficiently general to include both
a single common medium of exchange and many goods simultaneously acting as media of exchange.

When will media of exchange actually be used in the trading post economy? Two conditions seem to be sufficient:
desirability of trade, net of transaction costs; absence of double coincidence of wants. The logic is simple. If trade is
desirable at prevailing equilibrium prices (net of transaction costs including the transaction cost of media of exchange)
and there is no double coincidence of wants, then in order for trade to proceed fulfilling the budget constraint at each
trading post separately, media of exchange will be used as carriers of value between trading posts. However, the absence
of double coincidence of wants depends on prevailing prices as well as endowments and technology. It is problematic
to characterize necessary and sufficient initial conditions so that absence of double coincidence is fulfilled. Hence, the
reliance on simple illustrative examples below. Nevertheless, the examples are intended to be robust. The parametric
examples should be contained in an open subset of parameter space where the results of the example remain valid.

Conversely, there are two cases where trading post equilibria will have no use of media of exchange: full double coin-
cidence of wants (subject to direct trade experiencing no higher transaction costs than indirect trade); and a no-trade equi-
librium. Again, necessary and sufficient conditions, a priori, to fulfill these characteristics are not immediately evident.

2. Trading posts

There are N tradeable goods denoted 1, 2, . . . , N. They are traded for one another pairwise at trading posts. {i, j}
(or equivalently {j, i}) denotes the trading post where goods i and j are traded for one another. There are N(N − 1)/2
distinct trading posts.

3. Prices

Goods are traded directly for one another without distinguishing any single good as ‘money’.
Let Δ represent the unit 1-simplex. At trading post {i, j}, the (relative) ask price of good i and (relative) bid price

of good j are represented as p{i,j} ≡ (a{i,j}
i , b

{i,j}
j ) ∈ Δ. In a (minor) abuse of notation, the ordering of i and j in the

superscript on p will matter. The relative ask price of good j and bid price of i are represented asp{j,i} ≡ (a{i,j}
j , b

{i,j}
i ) ∈ Δ.

Thus, there are two operative price 1-simplices at each trading post. The full price space then is ΔN(N−1), the N(N − 1)-
fold Cartesian product of Δ with itself; its typical element is p ∈ ΔN(N−1). Then the ask price of i at {i, j} in units of j
is a

{i,j}
i /b

{i,j}
j and the bid price of i is b

{i,j}
i /a

{i,j}
j .

Prices can then be read as rates of exchange between goods, distinguishing between bid (selling or wholesale) prices
and ask (buying or retail) prices. Thus the ask price of a hamburger might be 5.0 chocolate bars and the bid price 3.0
chocolate bars. Note that the ask price of a chocolate bar then is the inverse of the bid price of a hamburger. That is,
the ask price of a chocolate bar is 0.333 hamburger and the bid price of a chocolate bar is 0.2 hamburger.

4. Budget constraints and trading opportunities

The budget constraint is simply that at each pairwise trading post, at prevailing prices, in each transaction, payment
is given for goods received. That is, at trading post {i, j}, an ask/bid price pair is quoted p{i,j} ≡ (a{i,j}

i , b
{i,j}
j ) ∈ Δ

expressing the ask price of i in terms of j and a bid price of j in terms of i. A firm or household’s trading plan
(y, x) ∈ R2N(N−1) specifies the following transactions at trading post {i, j}: y

{i,j}
i (at ask prices, retail) in i, y

{i,j}
j (at

ask prices, retail) in j, x
{i,j}
i (at bid prices, wholesale) in i, x

{i,j}
j (at bid prices, wholesale) in j. Positive values of these

transactions are purchases. Negative values are sales. At each trading post (of two goods) there are four quantities to
specify in a trading plan. Then the budget constraint facing firms and households at each trading post is that value
delivered must equal value received. That is

0 = (a{i,j}
i , b

{i,j}
j ) · (y{i,j}

i , x
{i,j}
j ), 0 = (a{i,j}

j , b
{i,j}
i ) · (y{i,j}

j , x
{i,j}
i ) (B)

(B) says that purchases of i at the bid price are repaid by sales of j at the ask price, purchases of i at the ask price are
repaid by sales of j at the bid price.
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Given a price vector p ∈ ΔN(N−1) the array of trades fulfilling (B) is the set of trades fulfilling the N(N − 1) local
budget constraints at the trading posts. Denote this set

M(p) ≡ {(y, x) ∈ R2N(N−1)|(y, x) fulfills (B) at p for all i, j = 1, . . . , N, i = j}

5. Firms

The heavy lifting in this model is done by firms. They perform the market-making function, incurring transaction
costs. The population of firms is a finite set denoted F, with typical element f ∈ F . Thus, firm f’s technology set may
specify that f’s purchase of labor (retail) in exchange for i on the {i, labor} market and purchase of i and j wholesale
on the {i, j} market allows f to sell i and j (retail) on the {i, j} market. That is how f can become a market-maker. If
there is a sufficient difference between bid and ask prices so that f can cover the cost of its inputs with a surplus left
over, that surplus becomes f’s profits, to be rebated to f’s shareholders.

5.1. Transaction and production technology

Firm f’s technology set is Yf . We assume

P.0 Yf ⊂ R2N(N−1)

The typical element of Yf is (yf , xf ), a pair of N(N − 1)-dimensional vectors. The N(N − 1)-dimensional
vector yf represents f’s transactions at ask (retail) prices; the N(N − 1)-dimensional vector xf represents f’s
transactions at bid (wholesale) prices. The 2-dimensional vector yf {i,j} represents f’s transactions at ask (retail)
prices at trading post {i, j}; the 2-dimensional vector xf {i,j} represents f’s transactions at bid (wholesale) prices
at trading post {i, j}. The typical co-ordinates y

f {i,j}
i , x

f {i,j}
i are f’s action with respect to good i at the {i, j}

trading post. Since f may act as a wholesaler/retailer/market-maker, entries anywhere in (yf {i,j}, xf {i,j}) may
be positive or negative — subject of course to constraints of technology Yf and prices M(p). This distin-
guishes the firm from the typical household. The typical household can only sell at bid prices and buy at ask
prices.

The entry y
f {i,j}
i , represents f’s actions at ask prices with regard to good i at trading post {i, j}. y

f {i,j}
i > 0

represents a purchase of i at the {i, j} trading post (at the ask price). y
f {i,j}
i < 0 represents a sale of i at the ask

price.
The entry x

f {i,j}
i , represents f’s actions at bid prices with regard to good i at trading post {i, j}. x

f {i,j}
i > 0

represents a purchase of i at the trading post (at the bid price). x
f {i,j}
i < 0 represents a sale of i at the bid price.

A firm that is an active market-maker at {i, j} will typically buy at the bid price and sell at the ask price. A
firm that is not a market-maker may have to pay retail — like the rest of us — selling at the bid price and buying
at the ask price.

In addition to indicating the transaction possibilities, Yf includes the usual production possibilities. The usual
assumptions on production technology apply. For each f ∈ F , assume

P.I Yf is convex.
P.II 0 ∈ Yf , where 0 indicates the zero vector in R2N(N−1).

P.III Yf is closed.
The aggregate technology set is the sum of individual firm technology sets. Y ≡ ∑

f ∈ FYf . It fulfills the
familiar no free lunch and irreversibility conditions.

P.IV [(a)] if (y, x) ∈ Y and (y, x) /= 0, then y
{i,j}
i + x

{i,j}
i > 0 for some i, j.

[(b)] if (y, x) ∈ Y and (y, x) /= 0, then −(y, x) /∈ Y .

Denote the initial resource endowment of the economy as r ∈ RN+ . Then we define the attainable production plans
of the economy as

Ŷ ≡ {(y, x) ∈ Y |ri ≥
∑

j

(y{i,j}
i + x

{i,j}
i ) all i = 1, 2, . . . , N}
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Attainable production plans for firm f can then be described as

Ŷ f ≡ {
(yf , xf ) ∈ Yf | there is (yk, xk) ∈ Ykfor each k ∈ F, k /= f, so that⎡

⎣ ∑
k ∈ F,k /= f

(yk, xk) + (yf , xf )

⎤
⎦ ∈ Ŷ

⎫⎬
⎭

.

Lemma 5.1. Assume P.0–P.IV. Then Ŷ and Ŷ f are closed, convex, and bounded.

Proof. Starr (1997), Theorems 8.1 and 8.2. �

5.2. Firm maximand and transactions function

The firm formulates a production plan and a trading plan. The firm’s opportunity set for net yields after transactions
fulfilling budget is Ef (p) ≡ [M(p) − Yf ] ∩ R

2N(N−1)
+ . That is, consider the firm’s production, purchase, and sale

possibilities, net after paying for them, and what is left is the net yield. Using the sign conventions we have adopted —
purchases are positive co-ordinates, sales are negative co-ordinates — the net yield is then the negative co-ordinates
(supplies) in a trading plan that are not absorbed by payments due and the net purchases not required as inputs to the
firm. The supplies are subtracted out, so the surpluses enter Ef (p) as positive co-ordinates.

A typical element of these surplus supplies is denoted (y′, x′) ∈ Ef (p). In this notation y′ and x′ are dummies, not
actual marketed supplies and demands.

Now consider (y′, x′) ∈ Ef (p). In each good i, the net surplus available in good i is w
f
i ≡ ∑N

j=1(y′{i,j}
i + x′{i,j}

i )

and firm f’s surplus is the vector wf of these co-ordinates. To give this notion a functional notation, let W(y′, x′) ≡ wf

described here.
There are N − 1 trading posts where each good i is traded, at N − 1 rates of exchange. The notion of ‘profit’ is not

well defined. In the absence of a single family of well-defined prices, it is difficult to characterize optimizing behavior
for the firm. Fautes de mieux we’ll give the firm a scalar maximand with argument p, y′, x′. Firm f is assumed to have
a real-valued, continuous maximand vf (p; y′, x′). We take vf to be strictly monotone and concave in (y′, x′). This
description of vf includes as a special case the usual firm profit function (when p is sufficiently uniform across trading
posts that the usual notion of profit is well defined).

The firm’s optimizing choice (which may not be well defined) then is

Gf (p) ≡ {argmaxvf (p; y′, x′) ∈ Ef (p)}.
This results in the firm’s market behavior (without any constraint requiring actions to stay in a bounded range)

described by
Hf (p) ≡ {(y, x) ∈ M(p)|[(y, x) + (y′, x′)] ∈ Yf , (y′, x′) ∈ Gf (p)}. This marketed plan then results in the market

and dividend plan
Sf (p) ≡ {(y, x; w)|(y, x) ∈ Hf (p), [(y, x) + (y′, x′)] ∈ Yf , (y′, x′) ∈ Gf (p); w = W(y′, x′)}
The logic of this definition is that (y′, x′) ≥ 0 is the surplus left over after the firm f has performed according to its

technology and subject to prevailing prices.
It is possible that Sf (p) is not well defined, since the opportunity set may be unbounded. In the light of Lemma 5.1,

there is a constant c > 0 sufficiently large so that for all f ∈ F , Ŷ f is strictly contained in a closed ball, denoted Bc of
radius c centered at the origin of R2N(N−1). Following the technique of Arrow and Debreu (1954), constrained market
behavior for the firm will consist of limiting its production choices to Yf ∩ Bc. This leads to the constrained surplus

Ẽf (p) ≡ [[M(p) ∩ Bc] − [Yf ∩ Bc]] ∩ R
2N(N−1)
+ .

G̃f (p) ≡ {argmaxvf (p; y′, x′) ∈ Ẽf (p)}.

H̃f (p) ≡ {(y, x) ∈ M(p)|[(y, x) + (y′, x′)] ∈ Yf ∩ Bc, (y′, x′) ∈ G̃f (p)}.
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The firm’s constrained (to Bc) market behavior then is defined as

S̃f (p) ≡ {(y, x; w)|(y, x) ∈ H̃f (p), [(y, x) + (y′, x′)] ∈ Yf ∩ Bc, (y′, x′) ∈ G̃f (p); w = W(y′, x′)}.

Lemma 5.2. Assume P.0 – P.IV. Then Ẽf (p) is convex-valued, nonempty, upper and lower hemi-continuous.

Proof. (Note to the reader: The notation xo appears in two distinct unrelated forms in this proof. Usually as part of
firm f’s planned transactions, but later — completely distinctly — in the quotation from Green and Heller (1981).)
Upper hemi-continuity and convexity follow from closedness and convexity of the underlying sets. 0 ∈ Ẽf (p) always,
so nonemptiness is fulfilled. Lower hemi-continuity requires some work.

Let pν → po, (yo, xo) ∈ Ẽf (po). We seek (yν, xν) ∈ Ẽf (pν) so that (yν, xν) → (yo, xo). If (yo, xo) = 0, existence
of (yν, xν) → (yo, xo) is trivially satisfied. Suppose instead (yo, xo) ≥ 0 (the inequality applies co-ordinatewise). Then
in an ε-neighborhood of (yo, xo), for ν sufficiently large, we seek to show that there is (yν, xν) ∈ Ẽ(pν). (yν, xν) is the
required sequence. To demonstrate this, note that Ẽ(pν) is defined as the intersection of a convex-valued correspondence
lower hemi-continuous in p with a constant convex set. When (yo, xo) ≥ 0 and (yo, xo) ∈ Ẽf (po) it follows that the
relative interior of Ẽf (po) is nonempty. It is sufficient then to apply Green and Heller (1981), p. 48, (8, lower), “If
γi, i = 1, 2, are two l.h.c. convex-valued correspondences such that intγ1(xo) ∩ intγ2(xo) /= ∅, then γ1 ∩ γ2 is l.h.c. at
xo”. �

Lemma 5.3. Assume P.0–P.IV. Then G̃f (p), H̃f (p), S̃f (p) are well defined, nonempty, upper hemi-continuous, and
convex-valued for all p ∈ ΔN(N−1).

Proof. Note compactness of Bc. Apply Theorem of the Maximum, continuity and concavity of vf . �

Lemma 5.4. Assume P.0 - P.IV. Let [G̃f (p) + H̃f (p)] ∩ Ŷ f /= ∅. Then [G̃f (p) + H̃f (p)] ⊆ [Gf (p) + Hf (p)].

Proof. Recall that Bc strictly includes Ŷ f . Then the result follows from convexity of Yf and
Ŷ f and concavity of vf (p; y′, x′). The proof follows the model of Starr (1997), Theorem 8.3. Let
(y∗′, x∗′) ∈ G̃f (p), (y∗, x∗) ∈ H̃f (p), [(y∗′, x∗′) + (y∗, x∗)] ∈ Ŷ f ⊂ Bc. Use a proof by contradiction. Sup-
pose not. Then there is (y, x) ∈ Yf so that (y, x) − (yo, xo) = (y′, x′), where vf (p; y′, x′) > vf (p; y∗′, x∗′),
(y′, x′) ∈ Ef (p), and (yo, xo) ∈ M(p). But convexity of Yf and concavity of vf imply that on the chord between
(y∗, x∗) and (y, x) there is [α(y∗, x∗) + (1 − α)(y, x)] ∈ Bc for 1 ≥ α > 0 where vf (p; [α(y∗′, x∗′) + (1 − α)(y′, x′)]) >

vf (p; y∗′, x∗′). This is a contradiction. �

5.3. Inclusion of constrained supply in unconstrained supply

(y, x; w) ∈ S̃f (p) implies (y, x) ∈ Bc, a bounded set. w ∈ RN+ is f’s profits. By construction there is K > 0 so that w

is contained in the nonnegative quadrant of a ball of radius K centered at the origin, denoted BK ⊂ RN+ .

Lemma 5.5. Let p ∈ ΔN(N−1) such that S̃f (p) ∩ [Ŷ f × BK] /= ∅. Then Sf (p) is well defined and nonempty. Further
S̃f (p) ⊆ Sf (p).

Proof. Lemma 5.4. �

6. Households

There is a finite set of households, H, with typical element h.

6.1. Endowment and consumption set

h ∈ H has a possible consumption set, taken for simplicity to be the nonnegative quadrant of RN , RN+ . h ∈ H is
endowed with rh >> 0 assumed to be strictly positive to avoid boundary problems. h ∈ H has a share αhf ≥ 0 of firm
f, so that

∑
h ∈ Hαhf = 1.
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6.2. Trades and payment constraint

h ∈ H chooses (yh, xh) ∈ R2N(N−1) subject to the following restrictions. A household always balances its budget,
sells wholesale and buys retail:

(i) 0 ≥ x
h{i,j}
i for all i, j.

(ii) y
h{i,j}
i ≥ 0 for all i, j.

(iii) (yh, xh) ∈ M(p)

6.3. Maximand and demand

Household h’s share of profits from firm f is part of h’s endowment and enters directly into consumption. When the
profits of all firms f ∈ F , wf in (yf , xf ; wf ), are well defined, f distributes to shareholders wf , and h’s consumption
of good i is

(iv) ch
i ≡ rh

i +
[∑

f ∈ Fαhf wf
]
i
+ ∑N

j=1x
h{i,j}
i + ∑N

j=1y
h{i,j}
i

However, prices p may be such that Sf (p) is not well defined for some f. Then we may wish to discuss the
constrained version of (iv), where w̃f comes from (yf , xf ; w̃f ) ∈ S̃f (p).

(iv
′
) ch

i ≡ rh
i +

[∑
f ∈ Fαhf w̃f

]
i
+ ∑N

j=1x
h{i,j}
i + ∑N

j=1y
h{i,j}
i

In addition, h’s consumption must be nonnegative.
(v) ch ≥0. The inequality applies co-ordinatewise.

C.I For all h ∈ H , h’s maximand is the continuous, quasi-concave, real-valued, strictly monotone, utility function
uh(ch). uh : RN+ → R.

h’s planned transactions function is defined as Dh: ΔN(N−1) × RN#F → R2N(N−1). Let w denote
(w1, w2, w3, . . . , wf , . . . , w#F ).

Dh(p, w) ≡ {(yh, xh) ∈ R2N(N−1)|(yh, xh) maximizes uh(ch), subject to (i), (ii), (iii), (iv) and (v)}. However,
Dh(p, w) may not be well defined when opportunity sets are unbounded (when ask prices of some goods are zero)
and w may not be well defined for p such that Sf (p) is not well defined for some f. To treat this issue, let B#F

K be the
#F -fold Cartesian product of BK, and define D̃h: ΔN(N−1) × B#F

K → Bc.
D̃h(p, w) ≡ {(yh, xh)|(yh, xh)maximizes uh(ch), subject to (i), (ii), (iii), (iv′), (v), and (yh, xh) ∈ Bc}. The restric-

tion to Bc in this definition assures that D̃h(p) represents the result of optimization on a bounded set, and is well
defined.

Lemma 6.1. Assume P.0–P.IV, C.I. Then D̃h(p, w) is nonempty, upper hemi-continuous and convex-valued, for
all p ∈ ΔN(N−1), w ∈ B#F

K . The range of D̃h(p, w) is compact. For (p, w) such that |(yh, xh)| < c for (some)
(yh, xh) ∈ D̃h(p, w), it follows that D̃h(p, w) ⊆ Dh(p, w).

Proof. (Note to the reader: This proof includes an unfortunate confusion of notation. c without superscript denotes
a large real number indicating the radius of Bc, a ball strictly containing all attainable transactions of the typical
firm. ch and c∗ (with superscript) denote consumption vectors.) Apply Theorem of the Maximum, noting continuity
and quasi-concavity of uh, convexity of constraint sets defined by (i)–(v) or by (i), (ii), (iii), (iv

′
), (v). Inclusion

of D̃h(p, w) in Dh(p, w) follows the pattern of Starr (1997), Theorem 9.1(b). Proof by contradiction. Suppose not.
Then there is (y∗, x∗) ∈ Dh(p, w) with associated c∗ so that uh(c∗) > uh(ch). But recall |(yh, xh)| < c. On the chord
between (yh, xh) and (y∗, x∗) there is [α(y∗, x∗) + (1 − α)(yh, xh)], 1 > α > 0, fulfilling (i), (ii), (iii), (iv

′
), (v), and

|[α(y∗, x∗) + (1 − α)(yh, xh)]| = c so that u(αc∗ + (1 − α)ch) > u(ch). This is a contradiction. �
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7. Excess demand

Let (p, w′) ∈ ΔN(N−1) × B#F
K . Constrained excess demand and dividends at (p, w′) is defined as

Z̃ : ΔN(N−1) × B#F
K → R2N(N−1) × B#F

K .

Z̃(p, w′) ≡ {(
∑
f ∈ F

(yf , xf ) +
∑
h ∈ H

D̃h(p, w′), w1, w2, . . . , wf , . . . , w#F )|(yf , xf , wf ) ∈ S̃f (p)}.

Lemma 7.1. Assume P.0–P.IV, and C.I. The range of Z̃ is bounded. Z̃ is upper hemi-continuous and convex-valued
for all (p, w′) ∈ ΔN(N−1) × B#F

K .

Lemma 7.2. (Walras’ Law): Let (p, w′) ∈ ΔN(N−1) × B#F
K . Let (y, x, w) ∈ Z̃(p, w′). Then for each i, j = 1,. . ., N,

i /= j, we have

0 = (a{i,j}
i , b

{i,j}
j ) · (y{i,j}

i , x
{i,j}
j ), 0 = (a{i,j}

j , b
{i,j}
i ) · (y{i,j}

j , x
{i,j}
i ) (W)

Proof. The element (y, x) of (y, x, w) ∈ Z̃(p, w′) is the sum of elements (yf , xf ) of S̃f (p) and (yh, xh) of D̃h(p, w′)
each of which is subject to (B). �

8. Equilibrium

Let Ξ denote a compact convex subset of R2N(N−1) so that Ξ × B#F
K includes the range of Z̃. Let z ∈ Ξ, z ≡

((y{1,2}
1 , x

{1,2}
2 ), . . . , (y{i,j}

i , x
{i,j}
j ), . . . , (y{N−1,N}

N−1 , x
{N−1,N}
N )).

Define ρ : Ξ → ΔN(N−1)

ρ(z) ≡ {po ∈ ΔN(N−1)| for each i, j = 1, 2, . . . , N, i /= j,

po{i,j} ∈ Δ maximizes p{i,j} · (y{i,j}
i , x

{i,j}
j ) subject to p{i,j} ∈ Δ}.

Lemma 8.1. ρ is upper hemi-continuous and convex-valued for all z ∈ Ξ.
Define Γ : ΔN(N−1) × Ξ × B#F

K → ΔN(N−1) × Ξ × B#F
K .

Γ (p, z, w′) ≡ ρ(z) × Z̃(p, w′).

Lemma 8.2. Assume P.0 – P.IV, and C.I. Then Γ is upper hemi-continuous and convex-valued on ΔN(N−1) × Ξ × B#F
K .

Γ has a fixed point (p∗, z∗, w∗) and 0 = z∗.

Proof. Upper hemi-continuity and convexity are established in Lemmas 7.1 and 8.1. Existence of the fixed point
(p∗, z∗) then follows from the Kakutani fixed point theorem. To demonstrate that z∗ = 0, note Lemma 7.2 and strict
monotonicity of uh and vj . �

Definition: (p∗, w∗) ∈ ΔN(N−1) × B#F
K is said to be an equilibrium if

(0, w∗) ∈ {(∑f ∈ F (yf , xf ) + ∑
h ∈ HDh(p∗, w∗), w1, w2, . . . , wf , . . . , w#F )|(yf , xf , wf ) ∈ Sf (p∗)} where 0 is the

origin in R2N(N−1).

Theorem 8.1. Assume P.0–P.IV, C.I. Then there is an equilibrium (p∗, w∗) ∈ ΔN(N−1) × B#F
K .

Proof. Apply Lemmas 5.5, 6.1 and 8.2. Lemmas 8.2 provides (p∗, z∗, w∗) ∈ ΔN(N−1) × Ξ × B#F
K so that 0 = z∗,

where
(z∗, w∗) ∈ {(∑f ∈ F (yf , xf ) + ∑

h ∈ HD̃h(p∗, w∗), w1, w2, . . . , wf , . . . , w#F )|(yf , xf , wf ) ∈ S̃f (p∗)}.
Then S̃f (p∗) ∩ [Ŷ f × BK] /= ∅, so by Lemma 5.5, S̃f (p∗) ⊆ Sf (p∗). 0 = z∗, implies that
|(y∗h, x∗h)| < c, so by Lemma 6.1, D̃h(p∗, w∗) ⊆ Dh(p∗, w∗). But then (0, w∗) ∈ {(∑f ∈ F (yf , xf ) +∑

h ∈ HDh(p∗, w∗), w1, w2, . . . , wf , . . . , w#F )|(yf , xf , wf ) ∈ Sf (p∗)}.
Then (p∗, w∗) is an equilibrium. �
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8.1. No-arbitrage condition in trading post equilibrium

At trading post equilibrium profitable arbitrage by households should not be possible at prevailing equilibrium prices.
Otherwise, arbitrarily large trading profits would seem possible to the household. For simplicity, consider arbitrage
among only two commodities, without loss of generality denoted 1 and 2. There is only one trading post {1, 2 } under
consideration so the superscript designating the trading post can be omitted to simplify notation. The price vector is

((a1, b2), (a2, b1)) ∈ Δ × Δ

where Δ is the unit 1-simplex. Recall that households sell at bid prices, b1, b2 and buy at ask prices a1, a2. Then from
the household side the no-arbitrage condition can be stated as

b1

a2
≤ a1

b2
.

This is demonstrated in the following way. Consider a single household, omitting the household superscript for
simplicity. We have the following relations from the structure of the model:

x1 ≤ 0, x2 ≤ 0, y1 ≥ 0, y2 ≥ 0

−b2x2 = a1y1, −b1x1 = a2y2, x2 = −a1

b2
y1, y2 = −b1

a2
x1, x1 = −a2

b1
y2, y1 = −b2

a1
x2.

Consider household arbitrage in good 1, to accumulate large profits in good 2. Set −x1 = y1 = ξ > 0. Then x2 =
−(a1/b2)ξ and y2 = −(b1/a2)(−ξ) or y2 + x2 = ξ[b1/a2 − a1/b2] = arbitrage profit. Hence, the sufficient condition
for arbitrage profit to be nonpositive is b1/a2 ≤ a1/b2.

Similarly consider household arbitrage in good 2 to accumulate large profits in good 1. Set −x2 = y2 = ξ > 0.
Then x1 = −(a2/b1)ξ and y1 = −(b2/a1)(−ξ) or y1 + x1 = ξ[b2/a1 − a2/b1] = arbitrage profit. Hence a sufficient
condition for arbitrage profit to be nonpositive is b2/a1 ≤ a2/b1 or equivalently

b1

a2
≤ a1

b2
.

9. Media of exchange, commodity monies

Let (yh, xh) ∈ Dh(p, w′) be household h’s 2N(N − 1)-dimensional transaction vector. The x co-ordinates are typ-
ically sales (negative sign) at bid prices; the y co-ordinates are typically purchases (positive sign) at ask prices. Then
we can characterize h’s gross transactions in good i as

∑
j

y
h{i,j}
i −

∑
j

x
h{i,j}
i ≡ γh

i .

Further, the absolute value of h’s net transactions in good i, is

|
∑

j

y
h{i,j}
i +

∑
j

x
h{i,j}
i | ≡ νh

i .

The N-dimensional vector γh with typical element γh
i is h’s gross trade. The N-dimensional vector νh with typical

element νh
i is h’s net trade vector (in absolute value). μh ≡ γh − νh is h’s flow of goods as media of exchange, gross

trades minus net trades.
Since firms perform a market-making function, buying and selling the same good at a single trading post, a more

complex view of their transactions is needed to sort out trading flows used as media of exchange. In particular, for
firms, we should net out offsetting transactions within a single trading post. Thus, for f ∈ F , f’s gross transactions in
i, netting out intra-post transactions is

∑
j

|[yf {i,j}
i + x

f {i,j}
i ]| ≡ γ

f
i .
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The corresponding net transaction is

|
∑

j

[yf {i,j}
i + x

f {i,j}
i ]| ≡ ν

f
i .

The N-dimensional vector γf with typical element γ
f
i is f’s gross inter-post trade. The N-dimensional vector νf

with typical element ν
f
i is h’s net inter-post trade vector (in absolute value). μf ≡ γf − νf is f’s flow of goods as

media of exchange, gross (inter-post) trades minus net trades.
The total (N-dimensional vector) flow of media of exchange among households and firms is then

∑
h ∈ Hμh +∑

f ∈ Fμf . This expression,
∑

h ∈ Hμh + ∑
f ∈ Fμf , is the flow of commodity monies.

Thus, the trading post equilibrium establishes a well-defined demand for media of exchange as an outcome of the
market equilibrium. Media of exchange (commodity monies) are characterized as goods flows acting as the carrier
of value between transactions (not fulfilling final demands or input requirements themselves), the difference between
gross and net trades.

10. Walrasian equilibrium, trading post equilibrium, and demand for media of exchange

10.1. Transaction costs, essential and inessential sequence economies

The issues of general equilibrium with transaction cost, efficiency of allocation and the implications for the role of
money appear in Foley (1970); Hahn (1971, 1973); Starrett (1973). Foley (1970) considers a static equilibrium with
(consistent with the Arrow–Debreu treatment) a single market meeting. All of the formal structure of the Arrow–Debreu
economy is maintained while the transaction process is treated as a production activity. Each of N goods has a bid
and ask (wholesale and retail) price with the resulting dimensionality of the price space at 2N. As in Debreu (1959)
the count N includes futures markets for all of the relevant goods. Foley (1970)’s distinctive powerful insight is that
this structure is mathematically equivalent to the Arrow–Debreu model. Assuming the usual continuity and convexity
assumptions, a competitive equilibrium exists in the convex transaction cost economy, and the resulting allocation is
Pareto efficient. The notion of Pareto efficiency here needs to take account of transaction costs: moving ownership
from one firm or household to another is a resource-using activity. Efficiency consists of efficient allocation net of the
necessary resource cost of reassigning ownership.

Hahn (1973) treats the reopening of markets over time in a sequence economy, distinguishing between essential
and inessential sequence economies. The issue treated is whether two otherwise identical economies have significantly
different equilibrium prices and resource allocation depending on the character of the budget constraint: a single
Arrow–Debreu budget for each household versus a time-dated sequence of budget constraints in a sequence economy.
In this comparison it is necessary to take account of transaction costs, so the reference point is not the conventional
Arrow–Debreu equilibrium without transaction costs (Debreu, 1959). Rather, it is the allocation in an Arrow–Debreu
economy with transaction costs (Foley, 1970).

This paper adopts the same usage. The efficiency concept is subject to technically necessary transaction costs. A
trading post equilibrium is ‘inessential’ if the resulting allocation is Walrasian, the same as in an Arrow–Debreu (Foley)
economy with transaction costs. The equilibrium is inessential if the multi-faceted structure of the trading post budget
constraint has no effect in itself on the resulting allocation of resources. Conversely, the trading post equilibrium will
be described as ‘essential’ if the equilibrium resource allocation is non-Walrasian, differing because of the structure
of budget constraints.

Then the resource allocation in an inessential trading post economy is a Walrasian equilibrium allocation and it
is Pareto efficient by the First Fundamental Theorem of Welfare Economics. Conversely, a trading post economy is
essential when the multi-faceted structure of budget constraints renders the equilibrium allocation of resources different
from an Arrow–Debreu equilibrium (taking full account of the effect of transaction costs, with a complete array of
futures markets). Then the equilibrium allocation will not be a Walrasian equilibrium and may be Pareto inefficient. The
inefficiency arises in either of two ways: additional resources may be expended in fulfillment the multiplicity of budget
constraints, or the allocation may be shifted (relative to Walrasian equilibrium) to fulfill the additional constraints. Since
these circumstances represent real resource allocations to fulfill a purely administrative constraint, the reallocation is
regarded as Pareto inefficient. This treatment is similar to Hahn (1973)’s treatment of sequence economies. A full
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development of efficiency conditions and detailed characterization of (in)essentiality is a significant topic, beyond the
scope of this paper.

The array of economies subject to general equilibrium modeling includes essential and inessential trading post
economies with resultant Walrasian and non-Walrasian allocations. Since the designation ‘essential’ or ‘inessential’ is
based on the character of endogenous equilibrium pricing, it seems problematic to distinguish essential from inessential
trading post economies a priori. The alternative is to review examples, several of which are presented below.

10.2. Economies actively using media of exchange

The examples of Sections 10.3.1 and 10.4.1 below illustrate the notion of trading post economies using media
of exchange in equilibrium. They are characterized by economies where trade is mutually advantageous but direct
trade between suppliers and final demanders at trading posts may be more costly in resources than indirect trade
through a lower transaction cost instrument. This typically reflects two elements of the example: direct exchange
is not fully mutually satisfactory because of absence of double coincidence of wants; transaction costs in some
commodity may be lower than others, favoring its use as a carrier of value in exchange. For a particularly sim-
ple example, see Starr (2008). It is difficult fully to characterize the attributes of an economy, a priori, that will
lead to these conditions, hence the reliance on examples. Nevertheless, the examples are intended to be robust. The
parameters of the examples are intended to be elements of an open subset of parameter space where similar results
hold.

10.3. Pareto efficiency of trading post equilibrium with transaction costless media of exchange

When there is a generally available zero-transaction cost medium of exchange, the trading post equilibrium will
be inessential and the resulting allocation of resources Pareto efficient (taking into account transaction costs). The
allocation will be a Walrasian equilibrium. Supposing that the transaction costs of media of exchange in advanced
monetary economies are low (if not nil), the zero-cost case should be a significant limiting case.

However important, the result is not deep. The presence of a costless medium of exchange means that price ratios
in a trading post economy will be the same as those of the corresponding Arrow–Debreu economy. The example of
Section 10.3.1 below illustrates the efficiency. The point of comparison is an economy with transaction costs, complete
markets, efficient allocation in general equilibrium, a single budget constraint for each household and well-defined
profit maximand for each firm, as in Foley (1970). Then apply the First Fundamental Theorem of Welfare Economics.

10.3.1. Example: A natural money absent double coincidence of wants; Pareto efficient allocation in trading post
equilibrium

Let H ≡ {h = 1, 2, . . . , N} where rh
h = 1 and where uh(ch) = 20ch

h+1 + ∑N
n /= h+1,n=1c

h
n for h = 1, . . . , 99, and

for h = N, uh(ch) = 20ch
1 + ∑N

n /= 1,n=2c
h
n. There are N households named h = 1, 2, . . . , N; each endowed with 1

unit of good h and strongly preferring good h + 1 (mod N) to all others.
There are N(N − 1)/2 firms denoted {i, j}, j > i, i, j = 1, 2, . . . , N. The transaction technology of {i, j}, i /= 1

is Y {i,j} ≡ {(y, x)| for k = i, j, 0 ≥ yk ≥ −0.8xk; for k /= i, j, yk = xk = 0}. For {i, j}, i = 1, Y {i,j} ≡ {(y, x)| for k =
1, y1 = −x1, for j /= 1, 0 ≥ yj ≥ −0.8xj; for k /= i, j, yk = xk = 0}. That is, for each pair of goods there is a distinct
trading post firm {i, j} and there is no arbitrage by firms between posts. Trade in all goods except good 1 experiences
a 20% loss in the trading process.

The resulting equilibrium prices, for i, j /= 1 are (a{i,j}
i , b

{i,j}
j ) = (5/8, 3/8). For i = 1, j /= 2

we have, (a{1,j}
1 , b

{1,j}
j ) = (1/2, 1/2), (a{1,j}

j , b
{1,j}
1 ) = (5/9, 4/9). For {1, 2} we have (a{1,2}

1 , b
{1,2}
2 ) =

(1/2, 1/2), (a{1,2}
2 , b

{1,2}
1 ) = (5/9, 4/9).

The trade flows for h = 2, 3, . . . , N − 1, are (xh{h,1}
h , y

h{h,1}
1 ) = (−1, 1), (xh{1,h+1}

1 , y
h{1,h+1}
h+1 ) = (−1, 0.8). For

h = N, (xN{1,N}
N , y

N{1,N}
1 ) = (−1, 0.8). For h = 1, (x1{1,2}

1 , y
1{1,2}
2 ) = (−1, 0.8). That is, direct trade of most goods i

for j is prohibitively expensive, losing 40% of the goods in the transaction process. Indirect trade, through good 1, is
more attractive since good 1 itself is transaction costless. The typical pattern of trade then is that household h sells
endowment, good h, for good 1, then sells good 1 for the desired good, h + 1. In the process, only 20% of goods are
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lost to transaction costs. In this is example all trade goes through good 1, and for N − 1 of N traders good 1 is a medium
of exchange. The allocation is Pareto efficient.

Is the trading post equilibrium a Walrasian equilibrium? Individual agent trading behavior in the trading post
model differs from Walrasian behavior (e.g. in Foley, 1970) since it includes active use of a medium of exchange,
good 1. But those trades are costless and net out to zero. The resulting resource allocation is fully consistent
with Walrasian equilibrium and in a Foley (1970) economy (Arrow–Debreu with transaction costs) the allocation
could be supported by Walrasian equilibrium prices. The allocation is Pareto efficient. This trading post economy is
inessential.

10.4. Pareto inefficiency of trading post equilibrium with costly media of exchange; An essential trading post
economy

As in Hahn (1973); Starrett (1973)’s analysis of a sequence economy, when the multi-faceted structure of the budget
constraint in the trading post economy significantly affects the real allocation of resources, the resulting allocation is
Pareto inefficient. This occurs because real resources spent or reallocated in fulfillment of the administrative requirement
of budget constraints represent a waste. The expenditure or reallocation is administratively required but technically
unnecessary.

10.4.1. Example: An essential trading post economy; Pareto inefficient allocation in trading post equilibrium
The following example simply follows the format of the previous example, except that there is no costless

medium of exchange. The result is a non-Walrasian Pareto inefficient allocation. The mechanism of ineffi-
ciency is transparent. Transactions will use the medium of exchange and incur the cost of doing so. The cost
is a wasted resource; it is administratively required but fulfills no technical function. Let the population H
and H’s endowments and preferences be as described in Section 10.3.1. There are N(N − 1)/2 firms denoted
{i, j}, j > i, i, j = 1, 2, . . . , N. The transaction technology of {i, j}, i /= 1 is Y {i,j} ≡ {(y, x) |for k = i, j, 0 ≥ yk ≥
−0.8xk; for k /= i, j, yk = xk = 0}. For {i, j}, i = 1, Y {i,j} ≡ {(y, x)| for k = 1, y1 = −x1, for j /= 1, 0 ≥ y1 + yj ≥
−0.9x1 − 0.8xj; for k /= i, j, yk = xk = 0}. That is, for each pair of goods there is a distinct trading post firm {i, j}
and there is no arbitrage by firms between posts. Trade in all goods except good 1 experiences a 20% loss of each good
in the trading process; trading two goods incurs two 20% losses, 20% of each. Trade in good 1 with any other good
j experiences a 30% loss in good j (a 10% saving compared to using any good other than 1 as medium of exchange,
hence the desirability of trading through good 1 if a medium of exchange is to be used).

The resulting equilibrium prices, for i, j /= 1 are (a{i,j}
i , b

{i,j}
j ) = (5/8, 3/8). For i = 1, j /= 2 we

have, (a{1,j}
1 , b

{1,j}
j ) = (1/2, 1/2), (a{1,j}

j , b
{1,j}
1 ) = (10/17, 7/17). For {1, 2} we have (a{1,2}

1 , b
{1,j}
2 ) =

(1/2, 1/2), (a{1,2}
2 , b

{1,j}
1 ) = (10/17, 7/17).

The trade flows for h = 2, 3, . . . , N − 1, are (xh{h,1}
h , y

h{h,1}
1 ) = (−1, 1), (xh{1,h+1}

1 , y
h{1,h+1}
h+1 ) = (−1, 0.7). For

h = N, (xN{1,N}
N , y

N{1,N}
1 ) = (−1, 0.7). For h = 1, (x1{1,2}

1 , y
1{1,2}
2 ) = (−1, 0.7). That is, direct trade of most goods i

for j is prohibitively expensive, losing 40% of the goods in the transaction process. This reflects the absence of double
coincidence of wants. A typical household directly trading good h for good h + 1 necessarily incurs transaction costs on
both sides of the bargain. Indirect trade, through good 1, is more attractive since good 1 itself carries lower transaction
costs. The typical pattern of trade then is that household h sells endowment, good h, for good 1, then sells good 1 for
the desired good, h + 1. In the process, only 30% of good h + 1 is lost to transaction costs.

In this example all trade goes through good 1, and for N − 1 out of N traders good 1 is a medium of exchange.
The allocation is not however Pareto efficient. Some of the resources used in the transaction process, 20% of gross
endowment, are technically necessary to the reallocation. It is not wasted. But the transaction costs associated merely
with fulfilling the pairwise trading post budget constraint, 10% of total endowment, is administratively necessary but
not technically necessary. It is a waste. The equilibrium allocation represents the outcome in an essential trading post
economy. It is not Pareto efficient.

Is the trading post equilibrium a Walrasian equilibrium? Individual agent trading behavior in the trading post model
differs from Walrasian behavior (e.g. in Foley, 1970) since it includes active use of a medium of exchange, good 1.
Those trades net out to a loss. The resulting resource allocation is inconsistent with Walrasian equilibrium. In a Foley
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(1970) economy (Arrow–Debreu with transaction costs) the allocation cannot be supported by Walrasian equilibrium
prices and it is Pareto inefficient. This trading post economy equilibrium is essential.

10.5. Economies not using media of exchange: Double coincidence of wants and inactive trade

Economies with full double coincidence of wants will typically not use media of exchange in trading post equilibrium.
Supplies are directly exchanged for demands3.

Alternatively, the economy may not use media of exchange simply because trade is unattractive. There are two
obvious cases: a Pareto efficient endowment and prohibitive transaction costs.

10.5.1. Full double coincidence of wants with linear transaction costs
Consider the following economy with full double coincidence of wants. Let N ≥ 2 be an even integer. Let H ≡

{h = 1, 2, . . . , N} where rh
h = 1 and where for h odd uh(ch) = 20ch

h+1 + ∑N
n /= h+1,n=1c

h
n, and for h even, uh(ch) =

20ch
h−1 + ∑N

n /= h−1,n=1c
h
n. There are N households named h = 1, 2, . . . , N; each endowed with 1 unit of good h and

the odd numbered households strongly preferring good h + 1, the even numbered households strongly preferring good
h − 1. Direct trade with the neighbor is the obvious policy. This will be true even if there is a low transaction cost
instrument available, so long as direct trade is no more costly than indirect trade through the low transaction cost
instrument.

Assume a population of firms and transaction technologies the same as in Section 10.4.1.
The resulting equilibrium prices, for i, j /= 1 are (a{i,j}

i , b
{i,j}
j ) = ((5/9), (4/9)). For {1, 2} we have (a{1,2}

1 , b
{1,2}
2 ) =

((10/17), (7/17)), (a{1,2}
2 , b

{1,2}
1 ) = ((1/2), (1/2)).

The trade flows for h odd, h /= 1, 2 are (xh{h,h+1}
h , y

h{h,h+1}
h+1 ) = (−1,.8), (xh{h,h+1}

h+1 , y
h{h,h+1}
h ) = (0, 0).

For h = even, (xh{h,h−1}
h , y

h{h,h−1}
h−1 ) = (−1,.8), (xh{h,h−1}

h−1 , y
h{h,h−1}
h ) = (0, 0). For h = 1, 2, (x1{1,2}

1 , y
1{1,2}
2 ) =

(−1, 0.7), (x1{1,2}
2 , y

1{1,2}
1 ) = (0, 0), (x2{1,2}

1 , y
2{1,2}
2 ) = (0, 0), (y2{1,2}

1 , x
2{1,2}
2 ) = (1, −1).

All of the trade flows in this allocation are direct trade. There is no trade in media of exchange. This reflects the
endowment, demand, and transaction cost structure: there is a double coincidence of wants, so there is little incentive
to trade indirectly, and no transaction cost advantage to indirect trade. Thus, the example generates a trading post
equilibrium without use of a medium of exchange. The trading structure and resulting allocation are Pareto efficient,
and constitute a Walrasian equilibrium (allowing for transaction costs). The trading post economy is inessential. That
is, the trade flows and resulting allocations would be the same — allowing for similar transaction technology — in a
unified (Foley (1970)) trading setting.

10.5.2. Inactive trade: Pareto efficient endowment
In an economy where there is no need for trade, there is no use for media of exchange. If the endowment is Pareto

efficient, there will be no use of media of exchange in a trading post equilibrium.

10.5.3. Inactive trade: Prohibitive transaction costs
A far more interesting reason for a nil demand for media of exchange is overwhelming transaction costs. Costs high

enough to discourage all trade will eliminate the demand for media of exchange as well.
Assume household population, tastes and endowments, the same as in Section 10.3.1.
There are N(N − 1)/2 firms denoted {i, j}, j > i, i, j = 1, 2, . . . , N. The transaction technology of {i, j}, all i, j,

is Y {i,j} ≡ {(y, x)| for k = i, j, 0 ≥ yk ≥ −0.1xk; for k /= i, j, yk = xk = 0}. That is, for each pair of goods there is a
distinct trading post firm {i, j} and there is no arbitrage by firms between posts. Trade in all goods experiences a 90%
loss in the trading process. Two sides to the trade compounds the loss: 99% loss in two trades.

The resulting equilibrium prices, for i, j are (a{i,j}
i , b

{i,j}
j ) = ((99/100), (1/100)). The endowment is the equilibrium

allocation. No household wishes to trade at a discount of 99% but this is just break-even for the firms considering

3 Exceptions to this generalization occur where multiple trades through a medium of exchange incur lower cost than a single direct trade. That
reflects some cost associated with the interaction between the goods traded directly (e.g. gasoline and matches) or economies of scale in a high
volume market with a common medium of exchange (Starr, 2003b).
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the oppressive transaction technology. The allocation is non-Walrasian and is far from Pareto efficient—one-step
rearrangements for each good would be a grand Pareto improvement, even incurring 90% transaction costs. But
that calculation ignores the 90% transaction cost on payment of quid pro quo, necessarily incurred in a trading
post equilibrium. This calculation reflects the dual problems of transaction costs and absence of double coincidence
of wants—if there were a better match of suppliers with demanders even 90% transaction costs could be borne and
mutually beneficial trades undertaken. But the absence of double coincidence of wants means that each trade undertaken
benefits directly only one side. Two trades and two sets of transaction costs must be incurred in the trading post economy,
and transaction costs then swamp the gains from trade.

11. Conclusion

This essay creates a parsimonious model where a medium of exchange (commodity money) is an outcome of
the (slightly augmented) Arrow–Debreu general equilibrium. The monetary structure of trade is a result of the price
theory general equilibrium. Monetary trade is not a separate assumption; monetary exchange is an outcome, a direct
implication of the general equilibrium when there are multiple distinct budget constraints facing each agent.

The trades of firms and households in a trading post economy may be characterized by many separate transactions,
each fulfilling a separate budget constraint. In an economy of N commodities there are N(N − 1)/2 trading posts, one
for each pair of goods. The trading post model reformulates the budget so that each of many separate transactions fulfills
its own budget constraint. This treatment generates a demand for carriers of value (media of exchange) moving among
successive trades (Starr, 2003a,b). Virtually the same axiomatic structure (Arrow and Debreu, 1954) that ensures
the existence of general equilibrium in the model of a unified market without transaction costs yields existence of
equilibrium and a well-defined demand for media of exchange in this disaggregated setting.

Trading post equilibria are Pareto efficient when they are simply the elaboration of an underlying Walrasian equi-
librium, an inessential trading post economy; see also Hahn (1973). However, the multiplicity of separate budget
constraints and the additional transaction costs incurred or avoided may skew the allocation and pricing (an essential
trading post equilibrium). Then the equilibrium cannot be supported by a Walrasian price structure and the allocation
will be Pareto inefficient; see also Starrett (1973).

The price system is informative not only about scarcity and desirability. It also prices liquidity. Transaction costs
generate a spread between bid and ask prices at each trading post. The bid–ask spread tells firms and households which
goods are liquid, easily traded without significant loss of value, and which are illiquid, unsuitable as carriers of value
between trades, Menger (1892). The multiplicity of budget constraints creates the demand for liquidity; the bid–ask
spreads signal its supply. When liquidity is too expensive (example 10.5.2), media of exchange will not be used. When
liquidity is inexpensive and helpful in achieving a Pareto improving allocation (example 10.3.1), media of exchange
will be actively traded in equilibrium. The trading post model endogenously generates a designation and a flow of
commodity money(ies). The existence of (commodity) money and the monetary structure of trade is an outcome of
the general economic equilibrium. Money is not a separate assumption; it is a result of the equilibrium allocation.
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